Supplementary Information for: ## Polymeric and lipid nanoparticles for delivery of selfamplifying RNA vaccines Anna K. Blakney^{1,2*}, Paul F. McKay², Kai Hu², Karnyart Samnuan², Nikita Jain³, Andrew Brown³, Anitha Thomas³, Paul Rogers², Krunal Polra², Hadijatou Sallah², Jonathan Yeow⁴, Yunqing Zhu^{4,5}, Molly M. Stevens⁴, Andrew Geall³, Robin J. Shattock^{2,*} - 1. The University of British Columbia, Michael Smith Laboratories, School of Biomedical Engineering, Vancouver, BC, Canada V6T1Z4 - 2. Imperial College London, Department of Infectious Disease, London, United Kingdom, W21PG - 3. Precision NanoSystems Inc., Vancouver, BC, Canada, V6P6T7 - 4. Imperial College London, Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, London, United Kingdom, SW72BU - 5. School of Materials Science and Engineering, Tongji University, Shanghai, 200092, China ^{*}Corresponding authors. Email: anna.blakney@msl.ubc.ca, r.shattock@imperial.ac.uk **Supplementary Figure 1**. Effect of polymeric and lipid nanoparticle formulations on saRNA protein expression *in vivo*. Images of fLuc expression from pABOL or LNP (LM01PE-LM03PC) 7 days after injection. Mice were injected intramuscularly with 5 µg of saRNA with an N:P ratio of 45:1 for pABOL and 8:1 for the LNP. For imaging, mice were injected IP with D-luciferin substrate, allowed to rest for 10 minutes, anesthetized using isoflurane and imaged on an In Vivo Imaging System (IVIS) FX Pro as described in the Methods section.